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DETERMINING WHEAT VITREOUSNESS USING IMAGE

PROCESSING AND A NEURAL NETWORK

N. Wang,  F. E. Dowell,  N. Zhang

ABSTRACT. A real–time, image–based grain–inspection instrument (GrainCheck 310) was used to develop back–propagation
ANN models to classify durum wheat kernels based on their vitreousness. Single–kernel images were created through
preprocessing. HSI color features of image rows and columns were used as the inputs to the ANNs. Several 11–class, 3–class,
and 2–class ANN models were trained with different numbers of hidden–layer nodes and training epochs. Classification rates
of 85% to 90% were achieved for the vitreous and non–vitreous classes. For all non–vitreous kernel subclasses, except the
“bleached” subclass, the classification rates also reached 85%. A correction algorithm was developed to overcome the
difficulty in measuring mottled kernels caused by the orientation of kernels under the camera. A 2–class ANN model
developed in this study was tested on two GrainCheck 310 machines. The average difference between the classification results
of these machines was 1.5%, indicating a good model transferability between machines. Comparisons also showed that the
performance of the machines is more consistent than human inspectors.
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urum wheat (Triticum durum L.) is used by
semolina millers and producers of pasta products
and couscous worldwide. Approximately
100 million bushels are grown in the U.S., and

1.2 billion bushels are produced worldwide. Vitreousness of
durum wheat is a measure of its quality and is related to the
protein content. Non–vitreous (starchy) kernels are opaque
and soft, and result in decreased yield of coarse semolina
(Dexter et al. 1988). In comparison, vitreous kernels appear
hard, glassy, and translucent, and have superior cooking
quality and pasta color, along with coarser granulation and
higher protein content. Thus, the vitreousness of durum
wheat kernels is an important selection criterion in grain
grading. Currently, the vitreousness of durum wheat kernels
is determined by visual inspection. This method is subjective
and tedious and can result in variation between inspectors. A
fast and objective grading and classification system would
reduce the inaccuracy caused by inspector subjectivity and
the labor requirement, thus benefiting producers, grain

Article was submitted for review in July 2002; approved for publication
by Food & Process Engineering Institute Division of ASAE in April 2003.
Presented at the 2002 ASAE Annual Meeting as Paper No. 026089.

Mention of a firm or a trade product does not imply endorsement or
recommendation of the authors over other firms or products not mentioned.

The authors are Ning Wang, ASAE Member Engineer, Assistant
Professor, Department of Biological and Agricultural Engineering; Floyd
E. Dowell, ASAE Member Engineer, Research Leader, USDA Grain
Marketing and Production Research Center; and Naiqian Zhang, ASAE
Member Engineer, Professor, Department of Biological and Agricultural
Engineering, Kansas State University, Manhattan, Kansas. Corresponding
author: Ning Wang, Department of Bioresource Engineering, Faculty of
Agricultural and Environmental Sciences, McGill University, 21,111
Lakeshore Road, Ste–Anne–de–Bellevue, Quebec, Canada H9X 3V9;
phone: 1–514–398–7781; fax: 1–514–457–8387.

handlers, wheat millers, and processors (Dexter and
Marchylo, 2000).

In recent years, optical, mechanical, and electrical
techniques have been applied to rapid grain grading and
classification.  Delwiche et al. (1995), using near–infrared
spectroscopy (NIRS) with an artificial neural network
(ANN), identified hard red winter and hard red spring wheat
classes with accuracies of 95% to 98%. Steenhoek et al.
(2001) developed a computer vision system to evaluate
blue–eye mold and germ damage in corn grading. An ANN
was used in the system to achieve classifications with
accuracies of 92% and 93% for sound and damaged
categories,  respectively. A single–kernel characterization
system (SKCS 4100, Perten Instruments, Springfield, Ill.),
which determines moisture content, weight, diameter, and
hardness of individual kernels, was developed by Martin et
al. (1993). Sissons et al. (2000) used the SKCS 4100 to
predict kernel vitreousness and semolina mill yield. Dowell
(2000) reported perfectly matched results of single–kernel
NIR spectroscopy with inspector classifications of obviously
vitreous or non–vitreous durum wheat kernels.

The GrainCheck 310 (FOSS Tecator, Höganäs, Sweden)
is an image processing– and ANN–based instrument for
assessing grain quality using color and shape information.
This technology can provide real–time wheat quality inspec-
tion for every shipment of grain between producers, receiv-
ing stations, mills, and breweries (Svensson et al., 1996). It
can replace tedious visual inspections of purity, color, and
size characteristics and improve grading consistency. Since
the GrainCheck 310 provides data related to purity and color,
it was considered possible to use this instrument to measure
the kernel vitreousness.

The objective of this research was to develop neural–net-
work models using kernel images to determine the vitreous-
ness of durum wheat using the GrainCheck 310.

D
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Figure 1. System configuration (Egelberg et al., 1994).

EQUIPMENT AND PROCEDURES
The GrainCheck 310 (GrainCheck 310, 1999) consists of

a kernel feeder unit, a color imaging unit, a weighing and
sorting unit, and a computer (fig. 1).

KERNEL FEEDER UNIT
The kernel feeder unit delivered the kernels into the field

of view of a CCD camera. Grain kernels were fed from the
sample inlet onto a conveyor belt, which moved forward by
steps, with grooves perpendicular to the moving direction. To
prevent kernels from overlapping, the belt was vibrated so
that the kernels were evenly distributed over the grooves. A
control unit inside the kernel feeder controlled movement of
the conveyer belt and sent the distance signal of belt
movement to the computer to synchronize the camera
operation so that all kernels in a sample were “seen” only
once by the camera. For a good contrast between the kernels
and the background, a blue belt was used.

COLOR IMAGING UNIT

An RGB color CCD camera (Sony XC 711P) was mounted
19.05 cm above the conveyer belt. The lens of the camera was
a Cosmicar/Pentax 25.0 mm, f1.4, TV lens. The camera
settings included AGC = 0 dB, shutter off, and gamma
compensation off. The aperture was then adjusted together
with the blue– and red–sensitivity settings using a standard
gray disk placed in front of the camera to achieve the white
balance. A 100 MHz Pentium PC with a frame grabber
(Matrox Meteor RGB) was used to digitize the images,
conduct image segmentation and feature extraction, execute
the classification algorithm based on the ANN, and serve as
a user interface. The frame grabber digitized the video
signals (in PAL format) captured by the CCD camera into
digital RGB images with a resolution of 512 � 512. The field
of view of the camera covered seven grooves on the belt. On
average, 15 kernels were processed per image. A circular
fluorescent lamp was used as the illumination source of the
system. It had a 20.32 cm outside diameter and emitted light
within the full visible wavelength range. The CCD camera
was situated at the center of this circular lamp.

CLASSIFICATION ALGORITHM
Preprocessing

Kernels were localized in the digitized image by scanning
the whole image and color–thresholding pixels against the
background (i.e., the conveyor belt, which was painted blue).
Using this color–thresholding algorithm, a pixel was consid-
ered a “blue pixel,” and hence a part of the conveyor, if its
blue intensity level was higher than both its red and green
intensity levels. When a pixel was determined to be a blue
pixel, it was assigned 0, 0, and 255 for the red, green, and blue
components, respectively. On the other hand, if a pixel was
found to be a non–blue pixel, its adjacent pixels were then
examined. If at least one of its adjacent pixels was also found
to be a non–blue pixel, then this pixel was considered a part
of a kernel and its R, G, B values were maintained. When all
pixels in the digitized image were examined, the size, the
major and minor axes, and the “center of gravity” of the
kernel were determined. Each kernel was then placed in a
recreated color image of 70 rows by 200 columns, with its
major axis being aligned with the row direction and the
“center of gravity” coinciding with the center of the image.

Because of the vibration of the belt, most kernels falling
into the grooves were physically separated from each other.
Thus, most recreated kernel images contained single kernels.
To ensure that overlapping or touching kernels were
separated into two images, the width (in the direction of the
minor axis) of the object was scanned along the major axis.
If an obvious local minimum was detected on the scanned
width profile, the image was judged as two kernels overlap-
ping or touching each other. The object was then cut into two
objects at the location where the local minimum was found.
Each object was then placed in a separate image.

After the preprocessing, each recreated image was a 70 �
200 color image containing a single kernel lying in the same
direction, with a blue background. Figure 2 gives examples
of the recreated single–kernel images. Figure 2d demon-
strates the result of the separation algorithm applied to
overlapping kernels.

Artificial Neural Network

A back–propagation network architecture was used in this
study. The number of inputs of the network was equal to the
number of features used for classification, whereas the
number of outputs was equal to the number of classes to be
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Figure 2. Kernel images for (a) HVAC–01, (b) NHVAC–01, (c) mottled,
and (d) clip.

separated. In the back–propagation algorithm, which was
based on a gradient descent method, each node in a layer was
connected to all nodes in the previous layer and in the next
layer with a weight. These weights defined the relationship
between the image features and output classes. These weights
were adapted through calibration of the training data in a
step–wise manner by repeatedly presenting the data to the
ANN for a number of epochs so as to minimize the
classification errors. Once the weights were determined, the
ANN could be used to categorize samples that were not
included in the calibration process.

The back–propagation ANN models used in this study all
had one hidden layer. Different numbers of hidden–layer
nodes (25, 50, 75, 100, 150, 200, and 300) were tested and
compared. For all ANN models used in this study, the
networks were fully connected. The basic learning rate used
for training was 0.01. In order to speed up the training, the
basic learning rate was multiplied by a scaling factor that was
proportional to the RMS error. This modification speeded up
the training in general, especially at the beginning training
stage. However, it also caused the RMS error to oscillate in
some cases. In order to improve the robustness of the models,
random noise was added to the weights. The noise was added
by multiplying the calculated change in the weight by 0.1 �
rand(), where rand() is a random Gaussian noise with a zero
mean and a unit variance. The momentum used in training
was 0.1, which allowed the changes made to the weights
during the previous epoch to be partially added to the current
changes. For all ANN models used in this study, the input
signals were scaled to the interval between –1.0 and 1.0. The
activation function used was the sigmoid function.

Color images were transformed to the hue, saturation, and
intensity (HSI) color space. The HSI color model decouples
the intensity component from the color information, and it
has been considered intimately related to the way in which
humans perceive colors (Gonzales and Woods, 1992). In the
HSI model, color change is reflected mainly in the continu-
ous change of one parameter (hue), whereas in the RGB
model, color change depends evenly on three independent
parameters (R, G, and B). The HSI color model was used in
this study simply based on an assumption that an ANN would
prefer the HSI model over the RGB model because ANNs
were designed based on an analogy to the human neural
system.

For the input layer of the ANN models, four features (the
means of cosH, sinH, S, and I) were extracted from each

image row and each image column as four input nodes. The
use of sinH and cosH may be seen as a redundancy. However,
simultaneous use of these two parameters allowed the
quadrant, in which the hue angle was located, to be distinctly
defined. For example, a sinH value of 0.707 gives two
possible hue values: 45� and 135�. If the cosH value is known
to be –0.707, then the hue value can be determined to be
135�.

Because there are 70 rows and 200 columns in each image,
the number of input nodes was 1080 (i.e., 4 � [70 + 200]).
Values of these input nodes were projected onto an input
vector x. The features extracted from image row i as projected
onto the input vector x were calculated using equations 1 to
4:
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The features extracted from image column j were
projected onto the input vector x using equations 5 to 8:
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where
H(i, j) = hue of the pixel in row i, column j
S(i, j) = saturation of the pixel in row i, column j
I(i, j) = intensity of the pixel in row i, column j
Nr = number of rows in the image (Nr = 70)
Nc = number of columns in the image (Nc = 200)
i = pixel row number (from 0 to Nr – 1)
j = pixel column number (from 0 to Nc – 1).
Because the input nodes were organized in the input vector

x following definitive row and column orders, the input layer
of the ANN contained both color and spatial information of
the images.

The value of each ANN output node represented the
predicted probability that a kernel belongs to a specific
output class. The kernel was assigned to the output class that
had the highest predicted probability.
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EXPERIMENTAL DESIGN
Three sets of experiments were conducted to develop

prediction models for wheat vitreousness using the Grain-
Check 310. The first experiment was intended to select the
most effective ANN model with respect to number of output
classes, number of hidden–layer nodes, and number of
training epochs. The second experiment was an instrument–
consistency test, with the objective of testing model ex-
changeability  between two GrainCheck 310 machines.
Finally, field samples were tested to evaluate performance of
the selected ANN model.

SAMPLE PREPARATION

The Grain Inspection, Packers, and Stockyards Adminis-
tration (GIPSA) of USDA provided three sets of test samples
for this study. Sample set 1 was used to develop the
calibration and prediction model for vitreousness of durum
wheat. The samples were classified as “hard vitreous and of
amber color” (HVAC) or “not hard vitreous and of amber
color” (NHVAC) by visual inspection of the Board of
Appeals and Review (BAR) of the GIPSA. Three subclasses
for HVAC and six subclasses for NHVAC kernels are defined
in table 1. Samples of 100 g each were available for each
subclass. During the tests, the sample for each subclass was
evenly divided into two sets: a calibration set and a validation
set. Hence, the validation set came from the same lot as the
calibration set. The calibration set was used to establish the
ANN prediction model, while the validation set was used to
test the model performance. Figure 2 shows examples of
kernel images from four subclasses.

Sample set 2 was also provided by the GIPSA and was
independent of sample set 1. This sample set included
25 samples of 250 g each. Percentages of HVAC and NHVAC
kernels in each sample were labeled by the BAR based on
their visual inspections. However, HVAC and NHVAC
kernels were not separated. This sample set was used to assess

Table 1. Durum wheat subclass and sample definitions.

Subclass
Sample

Identifier Description
Sample

Size

1 HVAC–01 Clean durum kernels inspected
as HVAC[a]

1384

2 HVAC–02 Bleached durum kernels in-
spected as HVAC

1256

3 HVAC–03 Cracked or checked durum
kernels inspected as HVAC

1224

4 NHVAC–01 Clean durum kernels inspected
as NHVAC[b]

1630

5 NHVAC–02 Bleached durum kernels in-
spected as NHVAC

873

6 NHVAC–03 Mottled/chalky durum kernels
inspected as NHVAC

1084

7 NHVAC–04 Sprouted durum kernels in-
spected as NHVAC

1434

8 NHVAC–05 Foreign materials 1914

9 NHVAC–06 All other classes of wheat 1559

10 Clip Clipped images of kernels 534

11 Unknown Unknown classes 522
[a] Hard vitreous and of amber color.
[b] Not hard vitreous and of amber color.

repeatability  of the calibration models on different Grain-
Check 310 machines.

Sample set 3 included 143 durum wheat samples from
Brian Sorensen, North Dakota State University. Each sample
weighed 100 g. The percentage of HVAC was determined by
the BAR and by the wheat–quality extension specialists of
the Department of Cereal and Food Sciences at North Dakota
State University. This set was used to test the performance of
the calibration model on an independent set of samples.

ANN MODEL SELECTION TEST

Three sets of calibration models were developed: an
11–class model, two 3–class models, and three 2–class
models. Several sub–sample sets with different combinations
of HVAC and NHVAC subclasses were generated to develop
different calibration models. The classification rates (eq. 1)
from different models were evaluated and compared:

BARbyAclasslabeledsampleainkernelsofnumberTotal

classifierANNanbyAclass toclassifiedkernelsofNumber

AclassforrateClassification =

 (9)

11–Class Model

The 11–class model was developed to classify kernels into
11 kernel subclasses (table 1), including the nine subclasses
defined by BAR, a “clip” subclass, and an “unknown”
subclass. The clip subclass (fig. 2d) included images that
were clipped during segmentation and images of kernels that
were not totally in the field of view. Images containing
multiple kernels were classified into the unknown subclass.

3–Class Models

Two 3–class models were tested: with an unknown class
(model 3a), and with a mottled class (model 3b). To develop
the 3–class model with an unknown class (model 3a), all
HVAC subclasses were combined into one class of HVAC
(3864 images), while all NHVAC subclasses were combined
into one class of NHVAC (8494 images). The third class
(“unknown”) combined the clip and unknown subclasses
(1056 images).

Mottling is a small, non–vitreous area in a kernel (fig. 2c).
Thus, mottled kernels should be considered non–vitreous.
However, for most mottled kernels, mottling occurs only on
a portion of the kernel, and other areas on the same kernel
may appear to be vitreous. On the GrainCheck 310 machine,
due to the random orientation of the kernels on the conveyer
belt, mottled areas might not always be exposed to the field
of view of the camera. As a result, a considerable number of
mottled kernels could be misclassified as vitreous kernels. To
derive a possible solution to correct this misclassification, the
3–class model with a mottled class (model 3b) was estab-
lished using three classes: HVAC, NHVAC, and mottled. In
order to balance the number of samples for vitreous and
non–vitreous classes, 3600, 3000, and 600 kernels were
randomly selected for the HVAC, NHVAC, and mottled
classes, respectively.

2–Class Models

To construct a simple calibration model, three 2–class
models were tested. These models classified kernel images
as either HVAC or NHVAC. The difference among these
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Table 2. Kernel classes used for the 2–class model
with weighted sample size (model 2c).

Class
Sample

Identifier

Weight of
Sample Size

(%)
Sample

Size

HVAC HVAC–01 80 1200

HVAC–02 10 150
HVAC–03 10 150

NHVAC NHVAC–01 80 1200

NHVAC–02 4 60
NHVAC–03 4 60
NHVAC–04 4 60
NHVAC–05 4 60
NHVAC–06 4 60

models was the number of samples used in training for each
class.

The first 2–class model (model 2a) was developed using
the entire original calibration image sets for HVAC and
NHVAC. The sample size of NHVAC (8494 images) was
about twice that of HVAC (3864 images). The second 2–class
model (model 2b) used identical sample sizes (1900 images)
for HVAC and NHVAC. These images were randomly
selected from the original calibration image sets.

Considering the fact that most field samples contained
mostly HVAC–01 and NHVAC–01 kernels, subclasses used
for the third 2–class model (model 2c) were weighted, as
described in table 2. The total numbers of kernels for the
HVAC and NHVAC classes (1500 images each) were
balanced for this model.

INSTRUMENT CONSISTENCY TEST

In order to examine the exchangeability of the model
across different GrainCheck 310 machines, identical samples
(sample set 2) was tested on two GrainCheck 310 machines
with the same calibration model (model 2b, developed using
50 hidden–layer nodes and 100 epochs). Results from the two
machines were compared. These results were also compared
with the results of two manual inspections performed by the
BAR.

FIELD SAMPLE TEST
In the field sample test, sample set 3, which was not used

for training the ANN models, was used to verify model 2b on
two GrainCheck 310 machines. Results from the two
machines were compared to each other. These results were
also compared with BAR inspection and with an inspection
conducted by the wheat–quality extension specialists of the
Department of Cereal and Food Sciences at North Dakota
State University.

RESULTS AND DISCUSSION
ANN MODEL SELECTION TEST
11–Class Model

The calibration results of the 11–class model with
different numbers of hidden–layer nodes shows that a larger
number of hidden–layer nodes yielded faster model conver-
gence. Table 3 shows results from the tests using the
validation data set. The model with 10 epochs and 200 nodes
had the highest classification rates of 87.0% and 88.8% for
HVAC and NHVAC, respectively. However, differences in

Table 3. Validation results of classification
rates (%) for the 11–class model.

Number
Number of Epochs

Number
of Nodes Class 10 100 200 300 450

25 HVAC 85.6 83.2 83.1 82.3 N/A

NHVAC 88.0 87.8 86.2 87.2 N/A

50 HVAC 80.5 83.8 84.8 83.7 82.8

NHVAC 89.5 87.8 87.6 87.5 87.7

100 HVAC 83.9 85.8 85.3 85.0 85.4

NHVAC 89.4 88.1 88.4 88.4 88.2

200 HVAC 87.0 85.1 85.9 85.7 N/A

NHVAC 88.8 88.4 88.5 88.7 N/A

300 HVAC 83.9 86.7 86.7 86.0 86.2

NHVAC 90.0 88.4 88.6 89.1 83.7

classification rates among models with different numbers of
hidden–layer nodes and different number of epochs were in
general within 10%.

3–Class Model with an Unknown Class (Model 3a)

Calibration results showed that the best version of
model 3a was with 100 nodes and 100 epochs, which
produced classification rates of greater than 98.0% for all
three classes (fig. 3). Verification results show that the best
3–class model with an unknown class was the model
obtained with 100 nodes and 70 epochs, which produced
classification rates of 90.1%, 85.0%, and 55.8% for HVAC,
NHVAC, and unknown, respectively. The unknown class
included all clipped images and unknown images, which
were very difficult to identify as one class with the ANN.
Inclusion of the “unknown” class might also have reduced the
classification rates of the other two classes. Therefore, the
unknown class was removed from other classification
models.

3–Class Model with a Mottled Class (Model 3b)

Calibration results for model 3b showed that classification
rates were over 96% for all three classes with 50 and
100 hidden–layer nodes when the number of epochs was
larger than 100 (fig. 4). The verification results showed that
the best model was with 50 nodes and 120 epochs, which
produced classification rates of 88.7%, 86.5%, and 73.3% for
HVAC, NHVAC, and mottled, respectively. Among the
mottled kernels, 17.7% were misclassified as HVAC, and 9%
were misclassified as NHVAC.

A visual examination of the mottled kernels randomly
selected from the calibration set showed that about 22% of
the mottled kernels were not positioned with their mottling
facing the camera. This percentage was similar to the
percentage of the mottled kernels misclassified as HVAC
(17.7%) derived in the verification test (table 4).

The orientation of kernels in the images was first settled
by the vibration of the conveyer belt. It was then fine–tuned
when single–kernel images were recreated. However, the
only orientation accomplished during these two steps was the
direction of the major axis. Rotations of the kernel around the
major axis were not limited. Because the rotational angle can
be viewed as random, the percentage of mottled kernels with
their mottling facing a certain direction was mainly deter-
mined by the average area of the mottling on the mottled
kernels. If this average area can be assumed constant within
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Figure 3. Calibration and validation results for the 3–class model with an
unknown class (model 3a): (a) calibration result with 100 hidden–layer
nodes, (b) validation result with 100 hidden–layer nodes.

a large sample set, a correction may be made to the
classification rate for mottled kernels.

For the mottled kernels tested in model 3b, if the 17.7%
misclassification  can be considered mainly due to the
rotation of kernels around their major axes, then 17.7% can
be added to the number of kernels classified as mottled.
Applying this correction to the results of the verification test,
the classification accuracy for the mottled class can be
improved to 91.0%. Furthermore, if the NHVAC and mottled
classes were combined into one class, the classification rate
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Figure 4. Calibration results for the 3–class model with a mottled class
(model 3b) and with 50 hidden–layer nodes.

for the NHVAC class would be improved to 89.4% with the
correction.

2–Class Models

Different combinations of number of epochs and number
of hidden–layer nodes were tested for models 2a, 2b, and 2c.
For model 2a, the best results were achieved with 100 hid-
den–layer nodes and 100 epochs (data not shown). Classifica-
tion results for the validation data set were 81.9% and 91.5%
for HVAC and NHVAC, respectively (table 4). The NHVAC
class has a larger sample size than the HVAC class, which
might have given a slight advantage to the NHVAC class.

For model 2b, the best results were achieved with 50 nodes
and 100 epochs (data not shown). For the validation data set,
classification rates were 84.9% and 90.5% for HVAC and
NHVAC, respectively (table 4). Figure 5 shows the classifi-
cation rate for each subclass. HVAC–01 and NHVAC–01 had
higher classification rates (around 90%) than most other
subclasses, except NHVAC–05 and NHVAC–06.

For model 2c, the best results were achieved with
50 hidden–layer nodes and 100 epochs (data not shown). For
the validation data set, the classification rates were improved
to 87.6% and 91.6% for HVAC and NHVAC, respectively
(table 4).

For commercial grain grading, it is often important to
identify different types of grain damage, such as bleached,

Table 4. Accuracy of predicting vitreousness of durum wheat using various neural network models.

Model
HVAC

Average
NHVAC
Average

HVAC
01

HVAC
02

HVAC
03

NHVAC
01

NHVAC
02

NHVAC
03

NHVAC
04

NHVAC
05

NHVAC
06

11–class[a] 87.0 88.8 N/A[h] N/A N/A N/A N/A N/A N/A N/A N/A

3–class (3a)[b] 90.1 85.0 N/A[h] N/A N/A N/A N/A N/A N/A N/A N/A

3–class (3b)[c] 88.7 86.5 93.6 90.4 82.3 85.1 75.4 82.3 85.2 92.9 97.9
3–class (3c)[d] 88.7 89.4 93.6 90.4 82.3 85.1 75.4 100.0 85.2 92.9 97.9

2–class (2a)[e] 81.9 91.5 90.9 82.9 71.9 88.6 82.0 86.3 95.0 98.3 98.7

2–class (2b)[f] 84.9 90.5 90.9 88.1 70.4 89.8 77.6 83.0 89.6 96.6 98.3
2–class (2c)[g] 87.6 91.6 95.4 86.1 66.7 88.8 79.5 76.3 74.7 88.6 95.3

[a]  The 11 classes include all HVAC and NHVAC subclasses, plus clipped and unknown images.
[b]  HVAC, NHVAC, and unknown classes.
[c]  HVAC, NHVAC, and mottled classes.
[d]  HVAC, NHVAC, and mottled classes, with correction for mottling.
[e]  HVAC and NHVAC classes, with unequal sample sizes.
[f]  HVAC and NHVAC, with equal sample sizes.
[g]  HVAC and NHVAC classes, with weighted sample sizes.
[h]  The 11–class model and model 3a were only tested for HVAC and NHVAC. Data for individual subclasses were not available.
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Figure 5. Classification rate of each subclass using model 2b with 100
nodes and 50 epochs.

mottled/chalky, and sprouted kernels. The classification rate
for each individual subclass should, therefore, be considered
when evaluating calibration models. Based on USDA GIPSA
recommendations,  the subclasses HVAC–02 (bleached
HVAC durum kernels), NHVAC–02 (bleached NHVAC
kernels), NHVAC–03 (mottled/chalky durum kernels in-
spected as NHVAC), and NHVAC–04 (sprouted durum
kernels inspected as NHVAC) should have classification
rates of greater than 85%. Model 2a approached this accuracy
for the four subclasses but had low HVAC accuracy (81.9%).
Several models exceeded 85% average accuracy for HVAC
and NHVAC, but none exceeded 85% accuracy for
HVAC–02, NHVAC–02, NHVAC–03, and NHVAC–04
while maintaining 85% or greater average HVAC and
NHVAC accuracy.

INSTRUMENT CONSISTENCY TEST
Model 2b was used to test sample set 2 for consistency

across two GrainCheck 310 machines: GC310(1) and
GC310(2). Figure 6 shows the percentages of HVAC kernels
in 25 samples derived from three inspections (two from the
GrainCheck 310 machines and one by the BAR). To compare
these inspections, two parameters were used. The first
parameter (the “average error”) was defined as the mean of
the differences between the HVAC percentages for each
sample derived from two inspections. The second parameter
is the coefficient of determination (R2) between the HVAC
percentages for the 25 samples derived from two inspections.

Test results showed that both GrainCheck 310 machines
under–predicted the HVAC percentages by 12% to 15% when
compared with the BAR results, whereas the average
difference between the two GrainCheck 310 machines was
only 1.54% (R2 = 0.89). On the other hand, the average
difference between the original BAR inspection and the BAR
re–inspection was 2.24% (R2 = 0.85) (fig. 7). Thus, it can be
concluded that the consistency between the two GrainCheck
310 machines was slightly higher than that between human
inspections.

FIELD SAMPLE TEST

In the field sample test, model 2b was verified using
sample set 3. Results from the two GrainCheck 310 machines
showed a high degree of consistency, with an average
difference of 0.8% between results from the two machines
and an R2 of 0.81. However, both GrainCheck 310 machines
under–predicted the BAR results by 15% to 16%, (R2 = 0.63
to 0.69). One possible reason for this under–prediction might
be the difference in quality between the samples used to train
the ANN model and the field samples used in verification.
For example, the HVAC training samples used to develop
model 2b were vitreous wheat kernels with high quality in
color, roundness, and shape. In contrast, the HVAC field
samples included many aged, dry HVAC kernels. This may
have confused the ANN during classification. To improve the
accuracy of HVAC classification, training samples at differ-
ent quality levels should be included.

The results of two GrainCheck 310 machines were also
compared with the results of two manual inspections: a BAR
inspection and an inspection provided by the wheat–quality
extension specialists of the Department of Cereal and Food
Sciences at North Dakota State University. The average
difference between the two manual inspections was 1.8%
(R2 = 0.75), whereas the average difference between the two
machines was 0.8% (R2 = 0.81). This result once again proves
that the machines tend to be more consistent than human
inspectors.

SUMMARY AND CONCLUSIONS
The following conclusions can be drawn from this study:

� An image–based grain–grading system that used ANN
classifiers was used to classify durum wheat vitreousness.
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Figure 6. Comparison of results obtained from two GrainCheck 310 machines and from the BAR examinations using sample set 2.
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Figure 7. Comparison of results obtained from two BAR examinations using sample set 3.

Single–kernel images were created through pre– process-
ing. Average hue, saturation, and intensity values for each
image row and column were used as the inputs for the
ANNs.

� Several ANN calibration models with various
combinations of number of classes, number of
hidden–layer nodes, and number of training epochs were
developed and evaluated. Samples of three subclasses of
HVAC and six subclasses of NHVAC kernels were used
for model calibration and validation. Several models
approached 85% to 90% correct classification for average
HVAC and NHVAC. However, none of the models
reached the correct classification rate of 85% (GIPSA
criteria) for bleached kernels. Test results also showed
that, for the 2–class and 3–class models, 50 to
100 hidden–layer nodes and 70 to 120 training epochs
gave the best classification results.

� A 3–class model, which included a mottled class, was
evaluated in order to minimize the effect of kernel
orientation on detection of mottled kernels. A correction
method was developed to improve the classification rates.
With this correction, the classification accuracies for the
mottled class and for the overall NHVAC class were
improved to 91.0% and 89.4%, respectively.

� A 2–class calibration model was examined on two
GrainCheck 310 machines to examine the transferability
of the model across machines. The average difference
between the classification results from the two machines
was 1.5%.

� Field samples were examined by two GrainCheck 310
machines and two human inspectors. Test results
suggested that, in order to improve the classification
accuracy of the GrainCheck 310 machines, samples at
different quality levels and with different ages should be
used in training. Cross–examination also indicated that
the machines tended to be more consistent than human
inspectors.

� No single model provided the best classifications for all
subclasses. The 2–class models may be preferred for their
simplicity in calibration, but additional inputs from the
GIPSA and the grain industry are needed to select the most
appropriate model.
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